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The boundary conditions on a body in a an aerosol have a significant effect on the hy- 
drodynamics of the gas and particles, a number of theoretical studies of Such flows have assumed 
that particleswhich fall onto the surface of the body disappear from the flow, i.e., that the sur- 
face of the body is a particle sink [1-3]. Such a formulation of the problem is most appropriate when 
liquid drops or particles which form a thin film on the surface after striking it are regarded as 
the disperse phase. If the disperse phase consists of solid particles, then the formulation often 
must be made more complex: it isnecessary to introduce an additional phase - a phase consisting 
of particles reflected from the surface of the body in the flow. Most of the works in which reflected 
particles have been studied have been experimental investigations [4-7]. The few thoeretical stud- 
ies have been made with the assumption that the mass concentration of particles is low. This 
makes it possible to examine the-motion of reflected particles within a specified field of 
gas velocities [8, 9]. Matveev [I0] proposed a model which makes it possible to study flow 
past a body in the presence of a layer of randomly moving particles located near the surface 
of the body. This particle layer is regarded a s a layer of a second "gas" having a Maxwell 
distribution of particles (molecules) with respect to velocity. Separate calculations were 
performed in [ii] with allowance for the effect of reflected particles on flow hydrodynamics. 
Here, no consideration was given to the collisions of incident and reflected particles. 

In the present investigation, we propose a mathematical model and method of calcula- 
tion which permit use of a three-velocity, three-temperature scheme of motion of interpenetra- 
ting continua to numerically study a broad range of problems concerning the aerodynamics of 
disperse flows. We indicate the ranges of the governing parameters within which it is im- 
portant to allow for the thermal and velocity disequilibria of the phases. The basic similar- 
ity criteria for the given class of problems are also formulated. 

i. Formulation of the Problem. We will examine the transverse flow of an aerosol past 
a flat plate with allowance for the particles that rebound from the lateral surface of the 
plate. To do this, we introduce a fraction (phase) consisting of incident particles, i.e. 
particles flying to the surface of the body (plate), and another fraction (phase) consisting 
of reflected particles - particles flying away from the surface of the body counter to the 
incoming disperse flow. Collisions take place between these two particle phases. Since the 
collisions result in an exchange of momentum between particles in the different phases, the 
velocities of both the incident and the reflected particles also change. This in turn makes 
it necessary to introduce an effective force of interaction between the particles. Along 
with the momentum exchange, the collisions result in phase transformations in which incident 
particles are transformed into reflectedparticles and vice versa. Since the collisions take 
place in the presence of a third body, i.e. the dispersion medium, and since the friction 
of the gas causes the particles to be entrained toward the plate, the resulting phase trans- 
formation will be the transformation of reflected particles into incident particles. Thus, 
we introduce only one source term into the continuity equation for these phases. This term 
accounts for the transformation from reflected particles to incident particles. It should 
be noted that allowance for collisions between particles leads to randomization of their 
motion. Thus, additional terms will appear in the momentum and energy equations for the 
main body of particles and an additional particle phase located near the surface of the plate. 
The random motion of the latter phase is characterized by a certain internal energy, and the 
phase has a macroscopic velocity that is close to zero. Allowance for the above-mentioned 
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terms and the additional phase appreciably complicates the system of equations: it now 
contains additional parameters whose values are not known beforehand. As a result of these 
complications, we will not take into account the randomization of the particles during the 
collisions. The equations which describe the given problem within the framework of a three- 
velocity, three-temperature scheme of motion have the following form [12]: 

continuity equations for the gas and particles 

O9,~Ot+ d i v ( •  = 0,  O9i/Ot 4- d i v ( o i v i )  = ]ij 

(i, 7-- 2, 3; i ~ ] ) ;  
(1.1) 

equations of motion for the gas phase and disperse phase 

V lolv~Vl -5 Vp ---- - -  f,2 --  f,~, 
( 1 . 2 )  

equations for the total energy of the mixture and the internal energy of the particles 

(O/Ot){9~E~ + p~E2 + p3E3} + div{9~E,v~ + 

+ 9eE2v2 + p3E3v3} 4- div(pvl) = 0 

= + m = 1, 2, 3 )  
It  t t  Opie#Ot + V 9~t~iei -= ql~ + ]~je~ + (t/2) fij (v~ - -  v~) + (1/2) ]~j (v<-- vj) 2. 

( 1 . 3 )  

Here, the subscripts i, j = 2, 3; i ; j correspond to the parameters of the gas and the in- 
cident and reflected particles, respectively; the superscript k is the summation index and 
pertains to the coordinate axes; p~, v~,ei, E~ are the reduced density, velocity vector, and 
internal and external energies of the i-th phase; p is the pressure in the gas; fl7, q,i are 
the friction vector and the rate of heat transfer between the gas and particles; fij,/~j 
are the vector of the effective force of interaction and the rate of mass transfer between 
the second and third phases as a result of the particle collisions. The last two terms in 
the equations for the internal energy of the incident (i = 2) and reflected (j = 3) particles 
show that, due to force (f~(v 2 -- v3)) and mass ((I/2)]~3(v2--v3) =) intractions, the kinetic energy 
of the disperse particles that is dissipated in the form of heat is distributed equally be- 
tween the phases of incident and reflected particles. 

We will close system (1.1)-(1.3) with the equations of state of the phases 

p = 9 ~  l) e 1, e l = c v l T  1, e 2 = c 2 T  2, e 3 -~c3T  3, 0 ~  ~  ( I  . 4 )  

where 7 is the adiabatic exponent of the gas; cv1 , c 2 = c~ are the isochoric heat capacity 
of the gas and the heat capacity of the particles, respectively; T i is the temperature of 

0 is the true density of the phase. We take the following equation to express the phases; Pi 
the friction between the dispersion medium (gas) and the particles 

f l i  = ( u i / 8 )  z~dCd~p ~ ( v l  - -  v 0  I v l  - -  v~ I- (1.5) 

We use the following relations [13] for the drag coefficient of the particles: 

Coi __ 24 4 C ~ (i + exp (--  0.423/M10), 
llel i -5 .~ZRel~ -5 0.4,: Cdi-~= d~ (1.6) 

(Reli is the Reynolds number of the particle flow; M1i is the Mach number of this flow cal- 
culated from the local sonic velocity; n i is the number of particles per unit volume). 

We use the same expressions as in [14] for the effective force of interaction between 
the incident and reflected paticles f~3 and the source term in the continuity equation which 
accounts for phase transformations of the type 3 + 2: 
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(d is the size of a particle). Here, the quantity k (F) determines the intensity of the mecha- 
nical interaction between the phases. In a study of the hydrodynamics of polydisperse flows 
in pipes [15], an expression was presented for the dependence of this coefficient on the dif- 
ference in the velocities of the phases. For velocities ~i0 m/sec, k(F) = 0.i. Extrapolating 
this relation to the case of velocities =I00 m/sec, we can show that k (F) = 0.02. The coef- 
ficient k (J), determining the rate of mass transfer, is of the same order as k (F) (k (J) = 0.08). 
It should be noted that, as k(F), k(J) generally depends on the parameters of the dispersion 
medium and the disperse particles. Also, this relation may differ somewhat from the values 
of k (J) and k (F) used to perform the main calculations. The values of k(F) and k (J) can be 
refined further on the basis of an analysis of experimental data on the interaction of parti- 
cles with one another in the flow of aerosols past solid bodies. 

The following boundary conditions were assigned for system (1.1)-(1.6): a) on the left 
external boundary - the condition in the incoming flow; b) on the top and right external 
boundaries-the conditions of continuity of the flow, i.e., the derivatives of the flow param- 
eters with respect to the normal to the theoretical region are equal to zero; c) in the plane 
of symmetry - the condition of symmetry of the flow; d) on the surface of the plate, the 
condition of nonflow for the gas and, for the particles, the condition of normal reflection 
with the coefficient k(n)(v~ =--k(~)v~,v~ = v~) . The initial system of equations was changed 
to dimensionless form with respect to the parameters of the gas in the undisturbed flow and 
the linear dimenslon of the body. It can be shown that this system of equations and boundary 
conditions contains ten dimensionless determining parameters. The most characteristic of ~ 
these parameters for the type of problems being examined here: the Mach number of the un- 
disturbed flow M~; the adiabatic exponent of the gas 7; the reflection coefficient k(n); the 
mass concentration of particles in the undisturbed flow r2~ ~ P2~/P~ , where p~ is the 
true density of the gas in the undisturbed flow; the degree of inertia of the particles 
~(~)= 8p~d/(3p~h) (h is the linear dimension); the parameter expressing the-velocity dis- 
equilibrium of the incident and reflected particles ~)= 3~(v)/(8k(F)r2~); the parameter charao- 

~m) 3~(~'/(Sk(J)r2~) ; the Ray- terizing the change in mass concentration due tocollisions; ,32 = 
O X  nolds number, calculated from the size of the particles: Red =p~v~d/~,. 

2. Method of Numerical Integration. We used the coarse-particle method [16, 17] to 
numerically integrate system (i.i)-(1.3). The scheme employed was of first-order accuracy. 
The accuracy of the results was checked by comparing numerical solutions obtained using dif- 
ferent space and time steps in the integration. The difference between the results was no 
greater than 3-5% in any of the cases. In our investigation, we generalized the coarse- 
particle method to the case of a three-phase model of a gas with particles. As in the case 
of a two-phase model of motion, intermediate values are computed only for the gas phase at 
the Eulerian stage of the process. The parameters of the second and third phases remain 
constant during this stage, since there are no pressure gradients in the equations for the 
solid phase. In the Lagrangian stage, we calculate the transfer of the mass, momentum, and 
energy of each phase across the boundaries of t~e cells. In the final stage, we use the 
conservation laws to find the values of the parameters of all of the phase for the new time 
layer. Here, allowance is made for phase interaction fij (i ; j = I, 2, 3), the rate of mass 
transfer between the second and third phases J23, and the heat fluxes q12, q13 from the 
dispersion medium to the incident and reflected particles, respectively. As in the case of 
the two-dimensional model, the parameters of the solid phase are calculated first. The 
theoretical region we used was in the form of a rectangle divided into 42 cells lengthwise 
and 22 cells over its height. The value 0.082 was taken for the dimensionless spatial step 
in the integration AX = &x/h, while the time step (A~) was found from the condition Ax/Sx = 
0.I. Calculations were performed with different values of M~, r2~, Red (Re d is the 
Reynolds number calculated on the basis of the size of the particles), k (z), k (F), k (~), ~(~) 
with fixed ~ = 1.4, cvJc2 = 0.991, Pr = 0.77 (which corresponds, for example, to a mixture of 
air with solid particles). 

3. Description of the Results. Figure 1 shows streamlines of the phases with ~(v) = 4, 
k (z) = O.08, k (F) = 0.02, k (n) = 0.7, M~ = 3, r~ = I, Re d ~ 1287. Here and below, unless otherwise 
noted the notation for the streamlines is as follows: gas phase - solid line; incident parti- 
cles-dots; reflected particles-circles. Curves 1 and 2 show the wave (SW) in the gasand the 
envelope of streamlines of the reflected particles (separatrix). The calculations showed that, with 
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allowance for reflected particles, the flow pattern in the case of supersonic flow past a 
bluff body can be described as follows. An outgoing shock wave is formed ahead of the body, 
and no disturbances from the body penetrate the incoming equilibrium flow behind this wave. 
Also located in front of the body is a zone of high particle concentration bounded by the 
separatrix. No reflected particles enter the incoming flow behind this zone, i.e., the 
separatrix is the envelope of the streamlines of the reflected particles. The normal velocity 
of these particles is equal to zero on the separatrix, and their concentration increases many- 
fold as they accumulate due to their slowing by the gas and the incident particles. The 
accumulation is limited by the transverse removal (blowing away) of particles by the gas 
moving toward the plate and by 3 + 2 phase transformations occurring due to collisions of 
the reflected particles with incident particles. As a result of these collisions, the reflec- 
ted particles join the flow of incident particles. 

The motion of the aerosol is characterized by the presence of two limiting cases. The 
first corresponds to the presence of very small particles, when the streamlines of the gas 
and particles nearly coincide. This case (conditionally designated as ~(v) = 0 in the figures) 
was calculated on the basis of an equilibrium scheme for an effective gas with an altered 
sonic velocity in the gas phase and an altered adiabatic exponent. The calculations were 
performed by means of the standard equations of gas dynamics. The second limiting situation 
corresponds to the case of very large particles (~(v) : ~ in the figures), when the gas has 
no effect on particle motion and vice versa. The calculations for this case were performed 
in accordance with a frozen flow scheme in which the distributions of the parameters in the 
gas correspond to the absence of particles and the particles move along straight trajectories 
with an initial velocity. These calculations showed that the presence of reflected particles 
leads to a situation whereby no monotonic transition takes place from the case ~(v) = 0 to 
the case ~(b) = ~ i.e., the distributions of the parameters in the gas are not found between 
the two limiting situations. Figures 2 and 3 show the distributions of the velocities of 
the phases and pressure in the gas along the plane of symmetry of the flow for different 
~(v) with the same M~,r2~,k(F),k <J), k (~, Re~, as in Fig. i. Here and below, unless otherwise 
noted we used the following notation for the parameters: solid line) gas phase; dons) in- 
cident particles; circles) reflected varticles; dot-dash line) case $(v) = ~; dot-dash line) 
~(v) = 0. Curves 2-5 correspond to $(v) = 2.02; 4.0; 40; 105. 

The variants with increasing $(v) shown in Figs. 2 and 3 illustrate that the decay of 
the separatrix shock wave increase with an increase in ~(v) from zero to a certain value 
~(v) = i00. Meanwhile, the decay of the wave in the gas is greater at ~(v) = 4.05 than at 
~(v) ~. At values of $(v) exceeding I00, reflected particles fly out from behind the bow 
wave~ creating a disturbance ahead of it and leading to the formation of two compression 
waves (see curves 4 in Figs. 2 and 3). In this case, the pressure on the body in genera! and 
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at the stagnation point in particular (x = O, v = O) becomes less than the pressure for the 
regime of flow of a pure (without particles) gas (B (v) = ~) due to the additional curvature 
of the streamlines of the gas and its transverse removal. With a further increase in parti- 
cle size, there is a tendency toward restoration of the bow wave and its return toward the 
body (see the curves in Figs. 2 and 3). This occurs as the flow pattern of the gas ap- 
proaches that seen with the frozen flow scheme (~(v) = ~) corresponding to flow of the pure 
gas. In this range of regimes, with the movement of reflected particles out in front of the 
bow wave, events are dominated by the stagnting effect of the reflected particles on the 
gas rather than by the additional curvature of the gas streamlines, With a decrease in 
~(v), there is a more complete transfer of momentum from particles to gas. Thus, the pres- 
sure of the gas at the stagnation point also increases. It is found that the incident par- 

ticles "press" the receding shock wave to the body, while the reflected particles "push it 
away" from the body. This pattern may introduce an element of nonmonoticity into the de- 
pendence of the distance between the shock wave and the body on the mass content of parti- 
cles in the incoming flow. 

Figure 4 shows distributions of the temperatures of the phases along the plane of sym- 
metry for different r2~ With the same ~, k ~. k ~F), keJ~ ~[~, as in Fig. i. Curves 1-4 cor- 
respond to r2~ -- 0; 0.2; 0.5; 2. It is evident that decay of the shock wave increases somewhat 
with an increase in r==. A further increase in r2= leads to a reduction in this decay. This 
occurs because the attendant sharp increase in the number of collisions between reflected 
and incident particles results in a reduction in the size of the region occupied by reflec~ 
ted particles and produces a situation in which the effect of the incident particles on wave 
decay becomes stronger than the analogous effect of the reflected particles. It should also 
be noted that when the concentration of disperse phase in the incoming flowis high (r2~ ~ I), 
the gas-temperature profile has a distinct nonmonotonic character (curve 4 in Fig. 4). This 
development is related to the occurrence of two competing processes in aerosols. The first 
is heat transfer between the gas and the particles, when heat is transferred from the highly 
heated gas to the colder particles. This leads to a decrease in the temperature of the gas 
in the shock layer. The second process is the dissipation of the kinetic energy of the parti- 
cles into the heat energy of the gas due to the friction of the former against the gas. This 
process, conversely, leads to heating of the gas and an increase in its temperature in the 
shock layer. Immediately behind the shock wave, where the difference between the velocities 
of the gas and particles is large, the second process predominates over the first and the 
temperature of the gas increases; in the boundary region, where the velocities of the phases 
are low and the mass content of particles is high, the first process predominates and gas 
temperature decreases. 
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Let us introduce a coefficient to account for the dynamic effect or wave resistance of 
the front surface of the body in a flowing aersol. This coefficient is equal to the ratio 
of the dynamic force Fl acting along this surface to half the dynamic head of the gas in 
the incoming flow: 

= F ,  

0 

( t h e  i n t e g r a l  i s  t aken  over  the  f r o n t  s u r f a c e  of  the  body in the  f l ow) .  We a l s o  i n t r o d u c e  
. ( x )  coefficients to account for the dynamic effect of the particles ~ and the drag of the 

plate C (x) : 
h 

C~X) == F2 S "~: 

0 

r ..L n t7 (x) 
C(X) _ F1 + F2 = P l ~  --  ,,,.oo~z 

(1/2) (~,~ + p~) (vf~)~ t '~ + ~'~ 

Figure 5 shows the dependence of the plate drag coefficient on ~(v) at the same values 

of M~,~,k(F),kU),R% as in Fig. i. The dot-dash lines correspond to CI (x), the 

points to C2 (x), and the solid lines to C (x). Curves i correspond to k(n) = 0, while curves 
2 correspond to k(n) = 0.7. Figure 5 shows that despite the marked dependence of Cl (x) and 
C (x) on ~(v) at k(n) = 0 the value ofc(x) chan=es only slightly throu hout the ran e of 
variation of B (v). At k(n) = 0.7, there is a substantial change in C( X~ at $(v) ~ @0, when , 
particles fly out in advance of the shock wave. In this case�9 the dependence of CI Ix) on ~(v) 
is nonmonotonic. With an increase in $(v) from 0 to 40, the value of CI (X) decreases because 
there is a decrease in the transfer of momentum from particles to gas. At ~(v) = 40, there 
is a sharp reduction in CI (X), since reflected particles fly out ahead of the shock wave into 
the incoming flow and the bow wave undergoes partial decay at these values of $(v). In this 
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case, the effect of the dispersion medium is weaker due to the additional lateral movement 
of the gas caused by the screening effect of the reflected particles. With a further in- 
crease in 8(v), the shock wave is restored and the coarse particles that fly out from behind 
it slow the gas only slightly. As a result, Cz(x) assumes a value close to that realized in 
the case of flow of the gas without particles. Thus, it can be concluded that in the cases 
trans- and supersonic flow Past bluff bodies, the velocity disequilibrium of the phases which 
exists as the parameter ~(v) changes from 1 to i00 has a substantial effect on the distribu- 
tion of the parameters of the gas and particles in the shock layer. However, as is evident 
from Fig. 5, this disequilibrium - associated with the relative motion of the gas and the 
particles - has little effect on the force which is exerted by the two-phase flow on the 
plate and which can be characterized by the coefficient C (x) and the dynamic head p=(v~) 2. 
Thus, the equilibrium scheme for an effective gas can be used to calculate the total drag 
coefficient of the plate in the case of supersonic flow. For example, with M~ = 3, the dif- 
ference between the maximum value of C (x) and the minimum value is 3% for the case when 
k (n) = 0 (no reflected particles). If particles are present, the difference between the max- 
imum C (x) and the minimum will be more substantial (about 20%). To check the adequacy of 
the proposed model in describing the physics of the problem in question, we compared numerical 
results with experimental data [4, 5]. Figure 6 shows the dependence of the corrected value 

(x) of the coefficient expressing the dynamic effect of the particles on the plate C 2 /Cx0 on 
the parameter 8(v) (Cx0 is the total drag coefficient of the plate at r2~ = 0) with M~ = 0.6 
and r2~ = 0.3. The solid curve shows the calculated results, while the line with the triangles 
shows the experimental data [4]. The comparison with the data from [4, 5] shows that the 
difference is no greater than 10-15%, which confirms the reliability of the results obtained 
here. 
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